Bimodules over Cartan MASAs in von Neumann algebras, norming algebras, and Mercer’s Theorem

نویسندگان

  • Jan Cameron
  • David R. Pitts
  • Vrej Zarikian
  • VREJ ZARIKIAN
چکیده

In a 1991 paper, R. Mercer asserted that a Cartan bimodule isomorphism between Cartan bimodule algebras A1 and A2 extends uniquely to a normal ∗-isomorphism of the von Neumann algebras generated by A1 and A2 (Corollary 4.3 of Mercer, 1991). Mercer’s argument relied upon the Spectral Theorem for Bimodules of Muhly, Saito and Solel, 1988 (Theorem 2.5, there). Unfortunately, the arguments in the literature supporting their Theorem 2.5 contain gaps, and hence Mercer’s proof is incomplete. In this paper, we use the outline in Pitts, 2008, Remark 2.17, to give a proof of Mercer’s Theorem under the additional hypothesis that the given Cartan bimodule isomorphism is σ-weakly continuous. Unlike the arguments contained in the abovementioned papers of Mercer and Muhly–Saito–Solel, we avoid the use of the machinery in Feldman– Moore, 1977; as a consequence, our proof does not require the von Neumann algebras generated by the algebras Ai to have separable preduals. This point of view also yields some insights on the von Neumann subalgebras of a Cartan pair (M,D), for instance, a strengthening of a result of Aoi, 2003. We also examine the relationship between various topologies on a von Neumann algebra M with a Cartan MASA D. This provides the necessary tools to parameterize the family of Bures-closed bimodules over a Cartan MASA in terms of projections in a certain abelian von Neumann algebra; this result may be viewed as a weaker form of the Spectral Theorem for Bimodules, and is a key ingredient in the proof of our version of Mercer’s Theorem. Our results lead to a notion of spectral synthesis for σ-weakly closed bimodules appropriate to our context, and we show that any von Neumann subalgebra of M which contains D is synthetic. We observe that a result of Sinclair and Smith shows that any Cartan MASA in a von Neumann algebra is norming in the sense of Pop, Sinclair and Smith. Received February 28, 2013; revised July 1, 2013. 2010 Mathematics Subject Classification. 47L30, 46L10, 46L07.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

Amalgamated Free Product over Cartan Subalgebra

Amalgamated free products of von Neumann algebras were first used by S. Popa ([26]) to construct an irreducible inclusion of (non-AFD) type II1 factors with an arbitrary (admissible) Jones index. Further investigation in this direction was made by K. Dykema ([10]) and F. Rădulescu ([27, 29]) based on Voiculescu’s powerful machine ([40, 41, 44]), and F. Boca ([4]) discussed the Haagerup approxim...

متن کامل

Cartan Subalgebras in C*-Algebras

According to J. Feldman and C. Moore’s wellknown theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e., a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C∗-algebraic analogue of this theore...

متن کامل

Norming C∗-algebras by C∗-subalgebras

The purpose of this paper is to introduce and explore a new concept for C∗-algebras: the notion of a norming C∗-subalgebra. The precise definition is given in the next section, but in general terms we have an inclusion A ⊆ B and we attempt to describe the norms of matrices over B by preand post-multiplying by rows and columns over A respectively, and calculating the norms of the resulting eleme...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013